

185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT

STORMWATER CONCEPT PLAN

LEGEND

DRAWING INDEX	
Drawing No.	DESCRIPTION
ACE170579.SW.DA - 000	COVER SHEET, NOTES & LEGEND
ACE170579.SW.DA - 101	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 SHEET 1 OF 5
ACE170579.SW.DA - 102	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 - TANK 1 SHEET 2 OF 5
ACE170579.SW.DA - 103	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 - TANK 2 SHEET 3 OF 5
ACE170579.SW.DA - 104	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 - TANK 3 SHEET 4 OF 5
ACE170579.SW.DA - 105	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 - TANK 4 SHEET 5 OF 5
ACE170579.SW.DA - 106	STORMWATER CONCEPT PLAN BASEMENT LEVEL 1
ACE170579.SW.DA - 107	STORMWATER CONCEPT PLAN GROUND LEVEL
ACE170579.SW.DA - 108	CATCHMENT PLAN
ACE170579.SW.DA - 109	OSD/WSUD DETAILS SHEET 1 OF 2
ACE170579.SW.DA - 110	OSD/WSUD DETAILS SHEET 2 OF 2
ACE170579.SW.DA - 111	MISCELLANEOUS DETAILS SHEET

LOCALITY PLAN

N.T.S.

CATCHMENT NOTE:
REFER TO SHEET 108 FOR MORE INFORMATION REGARDING OSD CATCHMENT AREAS.

BUILDING NOTE:
1- ALL PIPES IN BALCONIES TO BE Ø65 uPVC CAST IN CONCRETE SLAB.
2- CONTRACTOR TO PROVIDE A BREAK / OPEN VOID IN RAIL / BALLUSTRADE FOR STORMWATER EMERGENCY OVERFLOW.

PIPES NOTE:
Ø65 PVC @ MIN 1.0%
Ø90 PVC @ MIN 1.0%
Ø100 PVC @ MIN 1.0%
Ø150 PVC @ MIN 1.0%
Ø225 PVC @ MIN 0.5%
Ø300 PVC @ MIN 0.4%
UNLESS NOTED OTHERWISE

ROOF NOTE:
ALL ROOF DRAINAGE SYSTEM TO BE IN ACCORDANCE WITH BASIX REPORT & IS SUBJECT TO DETAILED DESIGN STAGE. ALL DOWNPipes TO BE CONNECTED TO THE WSUD CHAMBER.

GENERAL NOTES

1. ALL THE CLEANING EYES (OR INSPECTION EYES) FOR THE UNDERGROUND PIPES HAVE TO BE TAKEN UP TO THE FINISHED GROUND LEVEL FOR EASY IDENTIFICATION AND MAINTENANCE PURPOSES.
2. ALL LEVELS SHALL RELATE TO THE ESTABLISHED BENCH MARK.
3. THE BUILDER SHALL ENSURE THAT THE STORMWATER ENGINEERS DRAWINGS CORRESPOND TO THE ARCHITECTURAL, STRUCTURAL AND LANDSCAPING DRAWINGS. IF THERE EXISTS AND DISCREPANCIES BETWEEN THE DRAWINGS, THE BUILDER SHALL REPORT THE DISCREPANCIES TO THE ENGINEER PRIOR TO COMMENCEMENT OF ANY WORKS.
4. ALL MULCHING TO BE USED WITHIN THE AREA DESIGNATED AS ONS-SITE DETENTION STORAGE SHALL BE OF A NON-FLOATABLE MATERIAL SUCH AS DECORATIVE RIVER GRAVEL. PINE BARK MULCHING SHALL NOT BE USED WITHIN THE DETENTION STORAGE AREA.
5. ALL RETAINING WALLS SHALL BE CONSTRUCTED COMPLETELY WITHIN THE PROPERTY BOUNDARY LIMITS TO DETAILS PREPARED BY THE STRUCTURAL ENGINEER. WALLS FORMING THE ON-SITE DETENTION SYSTEM SHALL BE OF MASONRY/BRICK CONSTRUCTION AND WATER TIGHT.
6. ALL SUB-SOIL DRAINAGE SHALL BE A MINIMUM OF 65MM DIA AND SHALL BE PROVIDED WITH A FILTER SOCK. THE SUBSOIL DRAINAGE SHALL BE INSTALLED IN ACCORDANCE WITH DETAILS TO BE PROVIDED BY THE LANDSCAPE ARCHITECT.
7. PRIOR TO COMMENCING ANY WORKS, THE BUILDER SHALL ENSURE THAT THE INVERT LEVELS OF WHERE THE SITE STORMWATER SYSTEM CONNECTS INTO THE COUNCILS KERB/DRAINAGE SYSTEM MATCHED THE DESIGN LEVELs. ANY DISCREPANCIES SHALL BE REPORTED TO THE DESIGN ENGINEER IMMEDIATELY.
8. ALL LINES ARE TO BE Ø90 uPVC 1.0% GRADE UNLESS NOTED OTHERWISE. CHARGED LINES TO BE SEWERGRADE & SEALED.
9. EXISTING SERVICES LOCATIONS SHOWN INDICATIVE ONLY.
10. IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE & LEVEL ALL EXISTING SERVICES PRIOR TO THE COMMENCEMENT OF ANY EARTHWORKS.
11. ALL PIPES TO HAVE MIN 150mm COVER IF LOCATED WITHIN PROPERTY.
12. ALL PITS IN DRIVEWAYS TO BE 450x450 CONCRETE AND ALL PITS IN LANDSCAPED AREAS TO BE 450x450 PLASTIC.
13. PITS LESS THAN 450 DEEP MAY BE BRICK, PRECAST OR CONCRETE.
14. ALL BALCONIES AND ROOFS TO BE DRAINED AND TO HAVE SAFETY OVERFLOWS IN ACCORDANCE WITH RELEVANT AUSTRALIAN STANDARDS.
15. ALL EXTERNAL SLABS TO BE WATERPROOFED.
16. ALL GRATES TO HAVE CHILD PROOF LOCKS.
17. ALL DRAINAGE WORKS TO AVOID TREE ROOTS.
18. ALL DP'S TO HAVE LEAF GUARDS.
19. ALL EXISTING LEVELS TO BE CONFIRMED BY BUILDER PRIOR TO CONSTRUCTION.
20. ALL WORK WITHIN COUNCIL RESERVE TO BE INSPECTED BY COUNCIL PRIOR TO CONSTRUCTION.
21. COUNCIL'S ISSUED FOOTWAY DESIGN LEVELS TO BE INCORPORATED INTO THE FINISHED LEVELS ONCE ISSUED BY COUNCIL.
22. ALL WORK SHALL BE IN ACCORDANCE WITH B.C.A. AND A.S.3500.3.
23. REFER TO LANDSCAPE ARCHITECT'S DRAWINGS FOR LANDSCAPING.
24. ALL WALLS FORMING THE DETENTION BASINS SHALL BE CONSTRUCTED WHOLLY WITHIN THE PROPERTY BOUNDARIES OF THE SITE BEING DEVELOPED.
25. OSD WARNING SIGN AND SAFETY FENCING SHALL BE PROVIDED TO ABOVE GROUND OSD STORAGE AREA IN ACCORDANCE WITH COUNCIL'S REQUIREMENTS.
26. ENSURE THAT NON FLOATABLE MULCH IS USED IN DETENTION BASINS, ie. USE DECORATIVE ROCK MULCH OR EQUIVALENT.
27. THE OSD BASIN / TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

NOT FOR CONSTRUCTION

					Architect	Council	Scale	Certification By:	Australian Consulting Engineers	Project	Drawing Title		
A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV	XNT	OC	GM Architects 330a Parramatta Road Homebush West NSW 2140 EMAIL: info@gmarchitects.com.au PHONE: (02) 9797 1599	Liverpool City Council		 Anthony Hasham	AUSTRALIAN CONSULTING ENGINEERS. PTY LTD - A.C.N. 084 059 941 SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137 PH: (02) 9763 1500 FX: (02) 9763 1515 EMAIL: info@aceeng.com.au	185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION	COVER SHEET, NOTES & LEGEND	
Issue	Description	Date	Drawn	Design	Checked	100m	200m			Scale N.T.S.	Project No. ACE170579.SW.DA	Dwg. No. 000	Issue A

PUMP HOLDING TANK NOTE:

THE PUMP HOLDING TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

NOT FOR CONSTRUCTION

A ISSUE FOR DEVELOPMENT APPLICATION				17/10/2017	HUV	XNT	OC	Architect	Council	Scale	Certification By:	Project	Drawing Title	
A	Issue Description	Date	Drawn	Design	Checked	20cm		GM Architects 330a Parramatta Road Homebush West NSW 2140 EMAIL: info@gmarchitects.com.au PHONE: (02) 9797 1599	Liverpool City Council	0 4 8 12m SCALE 1:200 @ A1	 Anthony Hasham	AUSTRALIAN CONSULTING ENGINEERS. PTY LTD - A.C.N. 084 059 941 SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137 PH: (02) 9763 1500 FX: (02) 9763 1515 EMAIL: info@aceeng.com.au	185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 SHEET 1 OF 5
A	Issue Description	Date	Drawn	Design	Checked	20cm				0 4 8 12m SCALE 1:200		Project No. ACE170579.SW.DA	Dwg. No. 101	Issue A

PUMP-OUT SUMP:
 MAX TANK DEPTH (UPSTREAM) 1.0m
 MAX TANK DEPTH (DOWNSTREAM) 1.05m
 WIDTH 1.7m
 LENGTH 2.0m
 VOLUME PROVIDED 3.49m³

NOTE:

- 1- FOR ALL THE STRUCTURAL DETAILS, REFER TO STRUCTURAL ENGINEER'S PLAN.
- 2- ALL THE AG LINES BEHIND BASEMENT WALLS TO BE CONNECTED TO PUMP-OUT SUMP.

TANK 1
PUMP-OUT SUMP DETAIL
PLAN VIEW

SCALE 1:50

STANDARD PUMP OUT DESIGN NOTES

THE PUMP OUT SYSTEM SHALL BE DESIGNED TO BE OPERATED IN THE FOLLOWING MANNER:

- 1- THE PUMP SHALL BE PROGRAMMED TO WORK ALTERNATELY TO ALLOW BOTH PUMPS TO HAVE AN EQUAL OPERATION LOAD AND PUMP LIFE.
- 2- A FLOAT SHALL BE PROVIDED TO ENSURE THE MINIMUM REQUIRED WATER LEVEL IS MAINTAINED WITHIN THE SUMP AREA OF THE BELOW GROUND TANK. IN THIS REGARD THIS FLOAT WILL FUNCTION AS AN OFF SWITCH FOR THE PUMPS AT THE MINIMUM WATER LEVEL. THE SAME FLOAT SHALL BE SET TO TURN ONE OF THE PUMPS ON UPON THE WATER LEVEL IN THE TANK RISING TO APPROXIMATELY 300mm ABOVE THE MINIMUM WATER LEVEL. THE PUMP SHALL OPERATE UNTIL THE TANK IS DRAINED TO THE MINIMUM WATER LEVEL.
- 3- A SECOND FLOAT SHALL BE PROVIDED AT A HIGH LEVEL, WHICH IS APPROXIMATELY THE ROOF LEVEL OF THE BELOW GROUND TANK. THIS FLOAT SHALL START THE OTHER PUMP THAT IS NOT OPERATING AND ACTIVATE THE ALARM.
- 4- AN ALARM SYSTEM SHALL BE PROVIDED WITH A FLASHING STROBE LIGHT AND A PUMP FAILURE WARNING SIGN WHICH ARE TO BE LOCATED AT THE DRIVEWAY ENTRANCE TO THE BASEMENT LEVEL. THE ALARM SYSTEM SHALL BE PROVIDED WITH A BATTERY BACK-UP IN CASE OF POWER FAILURE.
- 5- A CONFINED SPACE DANGER SIGN SHALL BE PROVIDED AT ALL ACCESS POINT TO THE PUMP-OUT STORAGE TANK IN ACCORDANCE WITH THE UPPER PARRAMATA RIVER CATCHMENT TRUST OSD HANDBOOK.

BASEMENT PUMP OUT FAILURE WARNING SIGN

SIGN SHALL BE PLACED IN A CLEAR AND VISIBLE LOCATION WHERE VEHICLES ENTER THE BASEMENT

COLOURS:
 'WARNING' = RED
 BORDER AND OTHER LETTERING = BLACK

PUMP HOLDING TANK NOTE:

THE PUMP HOLDING TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

TANK 1 PUMP STORAGE VOLUME CALCULATION

- $I_{100,90\text{ min}} = 54.5 \text{ mm/hour}$
- PUMP STORAGE CATCHMENT AREA: $A = 37.7 \text{ m}^2 = 0.00377 \text{ ha}$
- $Q = C \times I \times A / 360$ WHERE $C = 1.0$ (REFER TO AS3500.3.5.4.6 (a))
 $= 1.0 \times 54.5 \times 0.00377 / 360$
 $= 0.00057 \text{ m}^3/\text{s}$
 $= 0.5707 \text{ L/s}$
- THEREFORE, THE PUMP HOLDING TANK VOLUME IS:
 $V = 0.5707 \times 1.5 \times 3600$
 $= 3.08 \text{ m}^3$

PUMP CALCULATIONS												
Project Address:		Tank 1 - 185 Fifth Avenue, Austral										
HL=(3.35x10e6xQ/(d^2.63xC)) ^{1.852}				h1=kv ² /2g								
HL(m/100m), Q(L/s), d(mm)				k(cum), v(m/s), g=9.8(m)								
d(mm)= 65		v(m/s) = 0.00			Elevation Head(m)= 7			Pipe Length(m)= 30				
Bend Losses, Kb= 3.06		Valve Losses, Kv= 2.13			Hazen - Williams C= 145			Hazen-Williams Constant				
Entry/Exit Losses, Ke= 5.00		Cum Losses, K= 10.19			125-140 Commercial steel pipe			135-140 Bitumen Lined Cast iron pipe				
Start Flow= 0		Hazen - Williams C= 145			140-145 Copper Tube			145-150 PVC				
Increment= 1												
Q(L/s)	0	1	2	3	4	5	6	7	8	9	10	
HL(m/100m)	0.00	0.18	0.64	1.36	2.32	3.51	4.92	6.55	8.39	10.44	12.68	
Hf(m)	HL x pipe Length/100	0.00	0.05	0.19	0.41	0.70	1.05	1.48	1.97	2.52	3.13	3.81
v(m/s)	Q(L/s) / area of pipe crossing section	0.00	0.30	0.60	0.90	1.21	1.51	1.81	2.11	2.41	2.71	3.01
h1(m)	k(cum) x v(m/s) ² /2xg	0.00	0.05	0.19	0.42	0.76	1.18	1.70	2.31	3.02	3.82	4.72
H(m)	=Hf+h1+Elevation Head	7.00	7.10	7.38	7.83	8.45	9.23	10.18	11.28	12.54	13.96	15.53

TANK 1 UNDERGROUND PUMP - OUT SUMP STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m ²)	CUMULATIVE VOLUME (m ³)
0	3.4	0
100	3.4	0.255
200	3.4	0.595
300	3.4	0.935
400	3.4	1.275
500	3.4	1.615
600	3.4	1.955
700	3.4	2.295
800	3.4	2.635
900	3.4	2.975
1000	3.4	3.315
1050	3.4	3.485

NOT FOR CONSTRUCTION

Architect	GM Architects	Council	Liverpool City Council	Scale	0 200 400 600mm	Certification By:		AUSTRALIAN CONSULTING ENGINEERS. PTY LTD - A.C.N. 084 059 941 SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137 EMAIL: info@aceeng.com.au	Project	185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION	Drawing Title	STORMWATER CONCEPT PLAN BASEMENT LEVEL 2 - TANK 1 SHEET 2 OF 5		
A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV XNT OC	Date Drawn Design Checked	200m						As Shown	Project No. ACE170579.SW.DA	Dwg. No. 102	Issue A
A	Description	Date	Drawn	Design	Checked	200m								

BASEMENT PUMP OUT FAILURE WARNING SIGN

SIGN SHALL BE PLACED IN A CLEAR AND VISIBLE LOCATION WHERE VEHICLES ENTER THE BASEMENT

COLOURS:
WARNING = RED
BORDER AND OTHER LETTERING = BLACK

TANK 2 PUMP STORAGE VOLUME CALCULATION	
<ul style="list-style-type: none"> $I_{100, 90 \text{ min}} = 54.5 \text{ mm/hour}$ PUMP STORAGE CATCHMENT AREA: $A = 160.7 \text{ m}^2 = 0.01607 \text{ ha}$ $Q = C \times I \times A / 360$ WHERE $C = 1.0$ (REFER TO AS3500.3.5.4.6 (a)) $= 1.0 \times 54.5 \times 0.01607 / 360$ $= 0.00243 \text{ m}^3/\text{s}$ $= 2.432 \text{ L/s}$ THE PUMP HOLDING TANK VOLUME IS: $V = 2.432 \times 1.5 \times 3600$ $= 13.14 \text{ m}^3$ 	

PUMP HOLDING TANK NOTE:

THE PUMP HOLDING TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

TANK 2 - SECTION A STORMWATER PUMP-OUT SUMP

SCALE 1:10

PUMP-OUT SUMP:
 MAX TANK DEPTH (UPSTREAM) 1.0m
 MAX TANK DEPTH (DOWNSTREAM) 1.05m
 WIDTH 2.0m
 LENGTH 7.0m
 VOLUME PROVIDED 14.91m³

CREATE A V TYPE CHANNEL SECTION WITHIN THE BASE OF THE TANK THAT GRADES FROM THE TOP END OF THE TANK TO THE INVERT.
 1% FALL

FOR STRUCTURAL DETAIL, REFER TO STRUCTURAL ENGINEER'S PLANS

STANDARD PUMP OUT DESIGN NOTES

THE PUMP OUT SYSTEM SHALL BE DESIGNED TO BE OPERATED IN THE FOLLOWING MANNER:
 1 - THE PUMP SHALL BE PROGRAMMED TO WORK ALTERNATELY TO ALLOW BOTH PUMPS TO HAVE AN EQUAL OPERATION LOAD AND PUMP LIFE.
 2 - A FLOAT SHALL BE PROVIDED TO ENSURE OF THE MINIMUM REQUIRED WATER LEVEL IS MAINTAINED WITHIN THE SUMP AREA OF THE BELOW GROUND TANK. IN THIS REGARD THIS FLOAT WILL FUNCTION AS AN OFF SWITCH FOR THE PUMPS AT THE MINIMUM WATER LEVEL. THE SAME FLOAT SHALL BE SET TO TURN ONE OF THE PUMPS ON UPON THE WATER LEVEL IN THE TANK RISING TO APPROXIMATELY 300mm ABOVE THE MINIMUM WATER LEVEL. THE PUMP SHALL OPERATE UNTIL THE TANK IS DRAINED TO THE MINIMUM WATER LEVEL.
 3 - A SECOND FLOAT SHALL BE PROVIDED AT A HIGH LEVEL, WHICH IS APPROXIMATELY THE ROOF LEVEL OF THE BELOW GROUND TANK. THIS FLOAT SHALL START THE OTHER PUMP THAT IS NOT OPERATING AND ACTIVATE THE ALARM.
 4 - AN ALARM SYSTEM SHALL BE PROVIDED WITH A FLASHING STROBE LIGHT AND A PUMP FAILURE WARNING SIGN WHICH ARE TO BE LOCATED AT THE DRIVEWAY ENTRANCE TO THE BASEMENT LEVEL. THE ALARM SYSTEM SHALL BE PROVIDED WITH A BATTERY BACK-UP IN CASE OF POWER FAILURE.
 5 - A CONFINED SPACE DANGER SIGN SHALL BE PROVIDED AT ALL ACCESS POINT TO THE PUMP-OUT STORAGE TANK IN ACCORDANCE WITH THE UPPER PARRAMATTA RIVER CATCHMENT TRUST OSD HANDBOOK.

NOTE:

- 1- FOR ALL THE STRUCTURAL DETAILS, REFER TO STRUCTURAL ENGINEER'S PLAN.
- 2- ALL THE AG LINES BEHIND BASEMENT WALLS TO BE CONNECTED TO PUMP-OUT SUMP.

TANK 2 PUMP-OUT SUMP DETAIL PLAN VIEW

SCALE 1:50

TANK 2 UNDERGROUND PUMP - OUT SUMP STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m ²)	CUMULATIVE VOLUME (m ³)
0	14.2	0
100	14.2	0.71
200	14.2	2.13
300	14.2	3.55
400	14.2	4.97
500	14.2	6.39
600	14.2	7.81
700	14.2	9.23
800	14.2	10.65
900	14.2	12.07
1000	14.2	13.49
1100	14.2	14.91

NOT FOR CONSTRUCTION

PUMP CALCULATIONS										
Project Address:	Tank 2 - 185 Fifth Avenue, Austral									
HL=(3.35x10e6xQ/(d^2.63xC))^1.852	h1=kv^2/2g						H(total head)=Hf+h1+Elevation Head(static head)			
HL(m/100m), Q(L/s), d(mm)	k(cum), v(m/s), g=9.8(m/s ²)	v(m/s)= 0.00	Elevation Head(m)= 5	Pipe Length(m)= 26						
d(mm)= 65	Bend Losses, Kb= 3.06	Valve Losses, Kv= 2.13	Hazen - Williams C= 145	Hazen-Williams Constant						
	Entry/Exit Losses, Ke= 5.00	Cum Losses, K= 10.19	125-140 Commercial steel pipe	135-140 Bitumen Lined Cast iron pipe						
Start Flow= 0	Increment= 1		140-145 Copper Tube	145-150 PVC						
Q(L/s)	0	1	2	3	4	5	6	7	8	9
HL(m/100m)	0.00	0.18	0.64	1.36	2.32	3.51	4.92	6.55	8.39	10.44
Hf(m)	0.00	0.05	0.17	0.35	0.60	0.91	1.28	1.70	2.18	2.71
v(m/s)	0.00	0.30	0.60	0.90	1.21	1.51	1.81	2.11	2.41	2.71
h1(m)	0.00	0.05	0.19	0.42	0.76	1.18	1.70	2.31	3.02	3.82
H(m)	=Hf+h1+Elevation Head	5.00	5.09	5.36	5.78	6.36	7.09	7.98	9.02	10.20

ISSUE FOR DEVELOPMENT APPLICATION			
17/10/2017	HUV	XNT	OC
Date	Drawn	Design	Checked
Issue	Description	20cm	

Architect
GM Architects
330a Parramatta Road
Homebush West NSW 2140
EMAIL: info@gmarchitects.com.au
PHONE: (02) 8797 1599

Council
Liverpool City Council

Scale
0 200 400 600mm
SCALE 1:10 @ A1
0 1 2 3 m
SCALE 1:50 @ A1

Certification By:
Anthony Hasham

AUSTRALIAN CONSULTING ENGINEERS.
PTY LTD - A.C.N. 084 059 941
SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
185 FIFTH AVENUE, AUSTRAL
PROPOSED MULTI-UNIT DEVELOPMENT
STORMWATER CONCEPT PLAN
DEVELOPMENT APPLICATION

Drawing Title
STORMWATER CONCEPT PLAN
BASEMENT LEVEL 2 - TANK 2
SHEET 3 OF 5

Scale A1
As Shown
Project No. ACE170579.SW.DA
Dwg. No. 103
Issue A

PUMP-OUT SUMP:
 MAX TANK DEPTH (UPSTREAM) 1.0m
 MAX TANK DEPTH (DOWNSTREAM) 1.05m
 WIDTH 1.7m
 LENGTH 2.0m
 VOLUME PROVIDED 3.49m³

NOTE:
 1- FOR ALL THE STRUCTURAL DETAILS, REFER TO STRUCTURAL ENGINEER'S PLAN.
 2- ALL THE AG LINES BEHIND BASEMENT WALLS TO BE CONNECTED TO PUMP-OUT SUMP.

**TANK 3
PUMP-OUT SUMP DETAIL
PLAN VIEW**

SCALE 1:50

PUMP HOLDING TANK NOTE:
 THE PUMP HOLDING TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

**TANK 3
PUMP STORAGE VOLUME
CALCULATION**

- $I_{100,90 \text{ min}} = 54.5 \text{ mm/hour}$
- PUMP STORAGE CATCHMENT AREA: $A = 37.7 \text{ m}^2 = 0.00377 \text{ ha}$
- $Q = C \times I \times A / 360$ WHERE $C = 1.0$ (REFER TO AS3500.3.5.4.6 (a))
 $= 1.0 \times 54.5 \times 0.00377 / 360$
 $= 0.00057 \text{ m}^3/\text{s}$
 $= 0.5707 \text{ L/s}$
- THEREFORE, THE PUMP HOLDING TANK VOLUME IS:
 $V = 0.5707 \times 1.5 \times 3600$
 $= 3.08 \text{ m}^3$

STANDARD PUMP OUT DESIGN NOTES

THE PUMP OUT SYSTEM SHALL BE DESIGNED TO BE OPERATED IN THE FOLLOWING MANNER:

- 1- THE PUMP SHALL BE PROGRAMMED TO WORK ALTERNATELY TO ALLOW BOTH PUMPS TO HAVE AN EQUAL OPERATION LOAD AND PUMP LIFE.
- 2- A FLOAT SHALL BE PROVIDED TO ENSURE OF THE MINIMUM REQUIRED WATER LEVEL IS MAINTAINED WITHIN THE SUMP AREA OF THE BELOW GROUND TANK. IN THIS REGARD THIS FLOAT WILL FUNCTION AS AN OFF SWITCH FOR THE PUMPS AT THE MINIMUM WATER LEVEL. THE SAME FLOAT SHALL BE SET TO TURN ONE OF THE PUMPS ON UPON THE WATER LEVEL IN THE TANK RISING TO APPROXIMATELY 300mm ABOVE THE MINIMUM WATER LEVEL. THE PUMP SHALL OPERATE UNTIL THE TANK IS DRAINED TO THE MINIMUM WATER LEVEL.
- 3- A SECOND FLOAT SHALL BE PROVIDED AT A HIGH LEVEL, WHICH IS APPROXIMATELY THE ROOF LEVEL OF THE BELOW GROUND TANK. THIS FLOAT SHALL START THE OTHER PUMP THAT IS NOT OPERATING AND ACTIVATE THE ALARM.
- 4- AN ALARM SYSTEM SHALL BE PROVIDED WITH A FLASHING STROBE LIGHT AND A PUMP FAILURE WARNING SIGN WHICH ARE TO BE LOCATED AT THE DRIVEWAY ENTRANCE TO THE BASEMENT LEVEL. THE ALARM SYSTEM SHALL BE PROVIDED WITH A BATTERY BACK-UP IN CASE OF POWER FAILURE.
- 5- A CONFINED SPACE DANGER SIGN SHALL BE PROVIDED AT ALL ACCESS POINT TO THE PUMP-OUT STORAGE TANK IN ACCORDANCE WITH THE UPPER PARRAMATTA RIVER CATCHMENT TRUST OSD HANDBOOK.

**BASEMENT PUMP OUT
FAILURE WARNING SIGN**

SIGN SHALL BE PLACED IN A CLEAR AND VISIBLE LOCATION WHERE VEHICLES ENTER THE BASEMENT

COLOURS:
 "WARNING" = RED
 BORDER AND OTHER LETTERING = BLACK

PUMP CALCULATIONS												
Project Address:	Tank 3 - 185 Fifth Avenue, Austral											
$HL = 3.35 \times 10e6 \times Q / (d^2 \cdot 2.63 \times C) ^ {1.852}$	$h1 = kv^2 / 2g$						$H(\text{total head}) = Hf + h1 + \text{Elevation Head}(\text{static head})$					
$HL(m/100m)$, $Q(L/s)$, $d(mm)$	$k(cum)$, $v(m/s)$, $g = 9.8(m)$						$Elevation Head(m) = 7$	$Pipe Length(m) = 30$				
$d(mm) = 65$	$v(m/s) = 0.00$											
	$Bend Losses, Kb = 3.06$											
	$Valve Losses, Kv = 2.13$						$Hazen - Williams C = 145$	$Hazen-Williams Constant$				
	$Entry/Exit Losses, Ke = 5.00$						$125-140 \text{ Commercial steel pipe}$					
	$Cum Losses, K = 10.19$						$135-140 \text{ Bitumen Lined Cast iron pipe}$					
$Start Flow = 0$							$140-145 \text{ Copper Tube}$					
$Increment = 1$							$145-150 \text{ PVC}$					
$Q(L/s)$	0	1	2	3	4	5	6	7	8	9	10	
$HL(m/100m)$	0.00	0.18	0.64	1.36	2.32	3.51	4.92	6.55	8.39	10.44	12.68	
$Hf(m)$	$HL \times \text{pipe Length}/100$	0.00	0.05	0.19	0.41	0.70	1.05	1.48	1.97	2.52	3.13	3.81
$v(m/s)$	$Q(L/s) / \text{area of pipe crossing section}$	0.00	0.30	0.60	0.90	1.21	1.51	1.81	2.11	2.41	2.71	3.01
$h1(m)$	$k(cum) \times v(m/s)^2 / 2g$	0.00	0.05	0.19	0.42	0.76	1.18	1.70	2.31	3.02	3.82	4.72
$H(m)$	$= Hf + h1 + \text{Elevation Head}$	7.00	7.10	7.38	7.83	8.45	9.23	10.18	11.28	12.54	13.96	15.53

NOT FOR CONSTRUCTION

A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV	XNT	OC
Issue	Description	Date	Drawn	Design	Checked
		10cm	10cm	10cm	10cm

Architect
GM Architects
 330a Parramatta Road
 Homebush West NSW 2140
 EMAIL: info@gmarchitects.com.au
 PHONE: (02) 8797 1599

Council
Liverpool City Council
 Scale

 SCALE 1:10 @ A1

 SCALE 1:50 @ A1

Certification By:

Anthony Hasham
 AUSTRALIAN
 CONSULTING
 ENGINEERS.
 PTY LTD - A.C.N. 084 059 941
 SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
 PH: (02) 9763 1500 FX: (02) 9763 1515
 EMAIL: info@aceeng.com.au

Project
**185 FIFTH AVENUE, AUSTRAL
PROPOSED MULTI-UNIT DEVELOPMENT
STORMWATER CONCEPT PLAN
DEVELOPMENT APPLICATION**

Drawing Title
**STORMWATER CONCEPT PLAN
BASEMENT LEVEL - TANK 3
SHEET 4 OF 5**

Scale A1 Project No. ACE170579.SW.DA
 Drawing No. 104 Issue A

TANK 4 - SECTION A
STORMWATER PUMP-OUT SUMP

SCALE 1:10

PUMP HOLDING TANK NOTE:
THE PUMP HOLDING TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

TANK 4
PUMP STORAGE VOLUME
CALCULATION

- $I_{00,00 \text{ min}} = 54.5 \text{ mm/hour}$
- PUMP STORAGE CATCHMENT AREA: $A = 37.7 \text{ m}^2 = 0.00377 \text{ ha}$
- $Q = C \times I \times A / 360$ WHERE $C = 1.0$ (REFER TO AS3500.3.5.4.6 (a))
 $= 1.0 \times 54.5 \times 0.00377 / 360$
 $= 0.00057 \text{ m}^3/\text{s}$
 $= 0.507 \text{ L/s}$
- THE THEREFORE, THE PUMP HOLDING TANK VOLUME IS:
 $V = 0.507 \times 1.5 \times 3600$
 $= 3.08 \text{ m}^3$

PUMP CALCULATIONS												
Project Address:	Tank 4 - 185 Fifth Avenue, Austral											
$HL = (3.35 \times 10e6 Q / (d^2 \cdot 2.63 \cdot C))^{1.852}$	$h1 = kv^2 / 2g$			$H(\text{total head}) = Hf + h1 + \text{Elevation Head}(\text{static head})$								
$HL(m/100m), Q(L/s), d(mm)$	$k(\text{cum}), v(m/s), g=9.8(m)$											
$d(mm) = 65$	$v(m/s) = 0.00$	$Elevation Head(m) = 6$	$Pipe Length(m) = 27$									
$Bend Losses, Kb = 3.06$	$Valve Losses, Kv = 2.13$	$Hazen - Williams C = 145$	$Hazen-Williams Constant$									
$Entry/Exit Losses, Ke = 5.00$	$Cum Losses, K = 10.19$	$125-140 \text{ Commercial steel pipe}$	$135-140 \text{ Bitumen Lined Cast iron pipe}$									
$Start Flow = 0$	$Increment = 1$	$140-145 \text{ Copper Tube}$	$145-150 \text{ PVC}$									
$Q(L/s)$	0	1	2	3	4	5	6	7	8	9		
$HL(m/100m)$	0.00	0.18	0.64	1.36	2.32	3.51	4.92	6.55	8.39	10.44		
$Hf(m)$	0.00	0.05	0.17	0.37	0.63	0.95	1.33	1.77	2.27	2.82		
$v(m/s)$	0.00	0.30	0.60	0.90	1.21	1.51	1.81	2.11	2.41	2.71		
$h1(m)$	0.00	0.05	0.19	0.42	0.76	1.18	1.70	2.31	3.02	3.82		
$H(m)$	6.00	6.10	6.36	6.79	7.38	8.13	9.03	10.08	11.29	12.64		
										14.15		

NOT FOR CONSTRUCTION

				Architect	Council	Scale	Certification By:	AUSTRALIAN CONSULTING ENGINEERS.	Project	Drawing Title
A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV XNT OC	GM Architects 330a Parramatta Road Homebush West NSW 2140 EMAIL: info@gmarchitects.com.au PHONE: (02) 9797 1599	Liverpool City Council	0 200 400 600mm SCALE 1:10 @ A1 0 1 2 3 m SCALE 1:50 @ A1	Anthony Hasham	PTY LTD - A.C.N. 084 059 941 SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137 PH: (02) 9763 1500 FX: (02) 9763 1515 EMAIL: info@aceeng.com.au	185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION	STORMWATER CONCEPT PLAN BASEMENT LEVEL - TANK 4 SHEET 5 OF 5
Issue	Description	Date	Drawn	Design	Checked	20cm				

NOTE:
1- FOR ALL THE STRUCTURAL DETAILS, REFER TO STRUCTURAL ENGINEER'S PLAN.
2- ALL THE AG LINES BEHIND BASEMENT WALLS TO BE CONNECTED TO PUMP-OUT SUMP.

TANK 4
PUMP-OUT SUMP DETAIL
PLAN VIEW

SCALE 1:50

BASEMENT PUMP OUT FAILURE WARNING SIGN

SIGN SHALL BE PLACED IN A CLEAR AND VISIBLE LOCATION WHERE VEHICLES ENTER THE BASEMENT

COLOURS:
'WARNING' = RED
BORDER AND OTHER LETTERING = BLACK

TANK 4
UNDERGROUND PUMP - OUT SUMP
STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m ²)	CUMULATIVE VOLUME (m ³)
0	3.0	0
100	3.0	0.225
200	3.0	0.525
300	3.0	0.825
400	3.0	1.125
500	3.0	1.425
600	3.0	1.725
700	3.0	2.025
800	3.0	2.325
900	3.0	2.625
1000	3.0	2.925
1050	3.0	3.075

LEGEND

STANDARD PUMP OUT DESIGN NOTES

THE PUMP OUT SYSTEM SHALL BE DESIGNED TO BE OPERATED IN THE FOLLOWING MANNER:

- 1 - THE PUMP SHALL BE PROGRAMMED TO WORK ALTERNATELY TO ALLOW BOTH PUMPS TO HAVE AN EQUAL OPERATION LOAD AND PUMP LIFE.
- 2 - A FLOAT SHALL BE PROVIDED TO ENSURE OF THE MINIMUM REQUIRED WATER LEVEL IS MAINTAINED WITHIN THE SUMP AREA OF THE BELOW GROUND TANK. IN THIS REGARD THIS FLOAT WILL FUNCTION AS AN OFF SWITCH FOR THE PUMPS AT THE MINIMUM WATER LEVEL. THE SAME FLOAT SHALL BE SET TO TURN ONE OF THE PUMPS ON UPON THE WATER LEVEL IN THE TANK RISING TO APPROXIMATELY 300mm ABOVE THE MINIMUM WATER LEVEL. THE PUMP SHALL OPERATE UNTIL THE TANK IS DRAINED TO THE MINIMUM WATER LEVEL.
- 3 - A SECOND FLOAT SHALL BE PROVIDED AT A HIGH LEVEL, WHICH IS APPROXIMATELY THE ROOF LEVEL OF THE BELOW GROUND TANK. THIS FLOAT SHALL START THE OTHER PUMP THAT IS NOT OPERATING AND ACTIVATE THE ALARM.
- 4 - AN ALARM SYSTEM SHALL BE PROVIDED WITH A FLASHING STROBE LIGHT AND A PUMP FAILURE WARNING SIGN WHICH ARE TO BE LOCATED AT THE DRIVEWAY ENTRANCE TO THE BASEMENT LEVEL. THE ALARM SYSTEM SHALL BE PROVIDED WITH A BATTERY BACK-UP IN CASE OF POWER FAILURE.
- 5 - A CONFINED SPACE DANGER SIGN SHALL BE PROVIDED AT ALL ACCESS POINT TO THE PUMP-OUT STORAGE TANK IN ACCORDANCE WITH THE UPPER PARRAMATTA RIVER CATCHMENT TRUST OSD HANDBOOK.

PUMP HOLDING TANK NOTE:

THE PUMP HOLDING TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

NOT FOR CONSTRUCTION

A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV	XNT	OC
Issue	Description	Date	Drawn	Design	Checked 20cm

Architect
GM Architects
330a Parramatta Road
Homebush West NSW 2140
EMAIL: info@gmarchitects.com.au
PHONE: (02) 8797 1599

Council
Liverpool City Council

Scale
0 4 8 12m
SCALE 1:200 @ A1

Certification By:

Anthony Hasham

AUSTRALIAN CONSULTING ENGINEERS.
P.T.Y.L.T.D. - A.C.N. 0 8 4 0 5 9 9 4 1
SHOP 2/141 CONCORD NORTH STRATHFIELD NSW 2137
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION

Drawing Title
STORMWATER CONCEPT PLAN BASEMENT LEVEL 1

Scale 1:200 Project No. ACE170579.SW.DA Dwg. No. 106 Issue A

PIPES NOTE:

Ø65 PVC @ MIN 1.0%
 Ø90 PVC @ MIN 1.0%
 Ø100 PVC @ MIN 1.0%
 Ø150 PVC @ MIN 1.0%
 Ø225 PVC @ MIN 0.5%
 Ø300 PVC @ MIN 0.4%
 UNLESS NOTED OTHERWISE

BUILDING NOTE:

1- ALL PIPES IN BALCONIES TO BE Ø65 uPVC CAST IN CONCRETE SLAB.
 2- CONTRACTOR TO PROVIDE A BREAK / OPEN VOID IN RAIL / BALLUSTRADE FOR STORMWATER EMERGENCY OVERFLOW.

ROOF NOTE:

ALL ROOF DRAINAGE SYSTEM TO BE IN ACCORDANCE WITH BASIX REPORT & IS SUBJECT TO DETAILED DESIGN STAGE. ALL DOWNPipes TO BE CONNECTED TO THE WSUD CHAMBER.

CATCHMENT NOTE:

REFER TO SHEET 108 FOR MORE INFORMATION REGARDING OSD CATCHMENT AREAS.

NOT FOR CONSTRUCTION

A ISSUE FOR DEVELOPMENT APPLICATION		17/10/2017		HUV	XNT	OC
Issue	Description	Date	Drawn	Design	Checked	20cm

Architect: GM Architects
 330a Parramatta Road
 Homebush West NSW 2140
 EMAIL: info@gmarchitects.com.au
 PHONE: (02) 8797 1599

Council: Liverpool City Council

Scale: 0 4 8 12m
 Certification By:

 Anthony Hasham

AUSTRALIAN CONSULTING ENGINEERS.
 PTY LTD - A.C.N. 084 059 941
 SHOP 2/141 CONCORD RD NORTH STRATHFIELD NSW 2137
 PH: (02) 9763 1500 FX: (02) 9763 1515
 EMAIL: info@aceeng.com.au

Project: 185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION
 Drawing Title: STORMWATER CONCEPT PLAN GROUND LEVEL

Scale	A1	Project No.	ACE170579.SW.DA	Dwg. No.	Issue
1:200				107	A

ROAD 1

CATCHMENT LEGEND

PIPES NOTE:

Ø65 PVC @ MIN 1.0%
 Ø90 PVC @ MIN 1.0%
 Ø100 PVC @ MIN 1.0%
 Ø150 PVC @ MIN 1.0%
 Ø225 PVC @ MIN 0.5%
 Ø300 PVC @ MIN 0.4%
 UNLESS NOTED OTHERWISE

BUILDING NOTE:

1- ALL PIPES IN BALCONIES TO BE Ø65 uPVC CAST IN CONCRETE SLAB.
 2- CONTRACTOR TO PROVIDE A BREAK / OPEN VOID IN RAIL / BALLUSTRADE FOR STORMWATER EMERGENCY OVERFLOW.

ROOF NOTE:

ALL ROOF DRAINAGE SYSTEM TO BE IN ACCORDANCE WITH BASIX REPORT & IS SUBJECT TO DETAILED DESIGN STAGE. ALL DOWNPipes TO BE CONNECTED TO THE WSUD CHAMBER.

NOT FOR CONSTRUCTION

A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV	XNT	OC
Issue	Description	Date	Drawn	Design	Checked
	10cm at full size	10cm	20cm		

Architect: GM Architects
 330a Parramatta Road
 Homebush West NSW 2140
 EMAIL: info@gmarchitects.com.au
 PHONE: (02) 8797 1599

Council: Liverpool City Council

Scale: 0 4 8 12 m
 SCALE 1:200 @ A1

Certification By:

 Anthony Hasham

AUSTRALIAN CONSULTING ENGINEERS.
 PTY LTD - A.C.N. 084 059 941
 SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
 PH: (02) 9763 1500 FX: (02) 9763 1515
 EMAIL: info@aceeng.com.au

Project: 185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION

Drawing Title: CATCHMENT PLAN
 Scale: 1:200
 Project No: ACE170579.SW.DA
 Dwg. No: 108
 Issue: A

UNDERGROUND OSD TANK B STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m²)	CUMULATIVE VOLUME (m³)
0	43.00	0
100	43.00	2.15
200	43.00	6.45
300	43.00	10.75
400	43.00	15.05
500	43.00	19.35
600	43.00	23.65
700	43.00	27.95
800	43.00	32.25
900	43.00	36.55
1000	43.00	40.85
1100	43.00	45.15

TRASH SCREEN DETAIL
N.T.S.

CLASS A (LIGHT DUTY) HEEL PROOF HINGED GALVANIZED MILD STEEL GRATE FRAME FITTED WITH CHILDPROOF LOCKING DEVICES

ON-SITE DETENTION NOTE:

THE OSD BASIN / TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

ORIFICE PLATE B DETAIL
N.T.S.

**AUSTRALIAN
CONSULTING
ENGINEERS.**
PTY LTD - A.C.N. 084 059 941
SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project

185 FIFTH AVENUE, AUSTRAL
PROPOSED MULTI-UNIT DEVELOPMENT
STORMWATER CONCEPT PLAN
DEVELOPMENT APPLICATION

Drawing Title
**OSD & WSUD DETAILS
SHEET 1 OF 3**

Scale A1 Project No. ACE170579.SW.DA Dwg. No. 109 Issue A

A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV	XNT	OC
Issue	Description	Date	Drawn	Design	Checked
		20cm			

Architect
GM Architects
330a Parramatta Road
Homebush West NSW 2140
EMAIL: info@gmarchitects.com.au
PHONE: (02) 8797 1599

Council
Liverpool City Council

**AUSTRALIAN
CONSULTING
ENGINEERS.**
PTY LTD - A.C.N. 084 059 941
SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project

185 FIFTH AVENUE, AUSTRAL
PROPOSED MULTI-UNIT DEVELOPMENT
STORMWATER CONCEPT PLAN
DEVELOPMENT APPLICATION

Drawing Title
**OSD & WSUD DETAILS
SHEET 1 OF 3**

Scale A1 Project No. ACE170579.SW.DA Dwg. No. 109 Issue A

DETENTION TANK 1:

MAX TANK DEPTH 1.1m
MIN TANK DEPTH 1.0m
AREA 43.00m²
VOLUME PROVIDED 45.15m³

COMBINED UNDERGROUND OSD/WSUD TANK 1 DETAIL

SCALE 1:10

UNDERGROUND COMBINED OSD/WSUD TANK 2

PLAN VIEW

SCALE 1:25

ON-SITE DETENTION NOTE:

THE OSD BASIN / TANK IS TO BE BUILT TO THE CORRECT LEVELS & SIZE AS PER THIS DESIGN. ANY VARIATIONS ARE TO BE DONE UNDER CONSULTATION FROM OUR OFFICE ONLY. ANY AMENDMENTS WITHOUT OUR APPROVAL WOULD RESULT IN ADDITIONAL FEES FOR REDESIGN AT OC STAGE OR IF A SOLUTION CANNOT BE FOUND, RECONSTRUCTION IS REQUIRED UNDER THE CONTRACTOR'S EXPENSES.

UNDERGROUND OSD TANK B STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m ²)	CUMULATIVE VOLUME (m ³)
0	43.00	0
100	43.00	2.15
200	43.00	6.45
300	43.00	10.75
400	43.00	15.05
500	43.00	19.35
600	43.00	23.65
700	43.00	27.95
800	43.00	32.25
900	43.00	36.55
1000	43.00	40.85
1100	43.00	45.15

ORIFICE PLATE B DETAIL

N.T.S

TRASH SCREEN DETAIL

N.T.S.

NOT FOR CONSTRUCTION

ISSUE FOR DEVELOPMENT APPLICATION			
17/10/2017	HUV	XNT	OC
Date	Drawn	Design	Checked
20cm			

Architect
GM Architects
330a Parramatta Road
Homebush West NSW 2140
EMAIL: info@gmarchitects.com.au
PHONE: (02) 9797 1599

Council
Liverpool City Council

Scale
0 200 400 600mm
0 0.2 0.4 0.6 0.8 1.0 1.2m
SCALE 1:10 @ A1
SCALE 1:25 @ A1

Certification By:
Anthony Hasham

AUSTRALIAN
CONSULTING
ENGINEERS.
PTY LTD - A.C.N. 0 84 0 59 9 41
SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
185 FIFTH AVENUE, AUSTRAL
PROPOSED MULTI-UNIT DEVELOPMENT
STORMWATER CONCEPT PLAN
DEVELOPMENT APPLICATION

Drawing Title
OSD & WSUD DETAILS
SHEET 2 OF 3

Scale A1	Project No. ACE170579.SW.DA	Dwg. No. 110	Issue A
As Shown			

SEDIMENT & EROSION NOTES

- IMMEDIATELY FOLLOWING SETTING OUT OF THE WORKS, BUT PRIOR TO COMMENCEMENT OF ANY CLEARING OR EARTHWORKS, THE CONTRACTOR AND SUPERINTENDENT SHALL WALK THE SITE TO NOMINATE THE LOCATIONS AND TYPES OF SEDIMENT AND EROSION CONTROL MEASURES TO BE ADOPTED. THESE MEASURES SHALL BE IMPLEMENTED PRIOR TO ANY CLEARING OR EARTHWORKS AND MAINTAINED UNTIL THE WORKS ARE COMPLETED AND NO LONGER POSE AN EROSION HAZARD, UNLESS OTHERWISE APPROVED BY THE SUPERINTENDENT.
- IMMEDIATELY FOLLOWING SETTING OUT OF THE WORKS, BUT PRIOR TO COMMENCEMENT OF ANY CLEARING OR EARTHWORKS, THE CONTRACTOR AND SUPERINTENDENT SHALL WALK THE SITE TO IDENTIFY AND MARK TREES WHICH ARE TO BE PRESERVED. NOTWITHSTANDING THE ABOVE, THE CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO MINIMISE DISTURBANCE TO EXISTING VEGETATION AND GROUND COVER OUTSIDE THE MINIMUM AREAS REQUIRED TO COMPLETE THE WORKS AND SHALL BE RESPONSIBLE FOR RECTIFICATION, AT ITS OWN COST, OF ANY DISTURBANCE BEYOND THOSE AREAS.
- PROVIDE GULLY GRATE INLET SEDIMENT TRAPS AT ALL GULLY PITS.
- PROVIDE SILT FENCING ALONG PROPERTY LINE AS DIRECTED BY SUPERINTENDENT.
- ADDITIONAL CONTROL DEVICES TO BE PLACED WHERE DIRECTED BY THE PRINCIPLE.
- ALTERNATIVE DESIGNS TO BE APPROVED BY SUPERINTENDENT PRIOR TO CONSTRUCTION.
- WASH DOWN/RUMBLE AREA TO BE CONSTRUCTED WITH PROVISIONS RESTRICTING ALL SILT AND TRAFFICKED DEBRIS FROM ENTERING THE STORMWATER SYSTEM.
- NO WORK OR STOCKPILING OF MATERIALS TO BE PLACED OUTSIDE OF SITE WORK BOUNDARY.
- APPROPRIATE EROSION AND SEDIMENT CONTROLS TO BE USED TO PROTECT STOCKPILES AND MAINTAINED THROUGHOUT CONSTRUCTION.
- IT IS THE CONTRACTOR'S RESPONSIBILITY TO TAKE DUE CARE OF NATURAL VEGETATION. NO CLEARING IS TO BE UNDERTAKEN WITHOUT PRIOR APPROVAL FROM THE SUPERINTENDENT.
- TO AVOID DISTURBANCE TO EXISTING TREES, EARTHWORKS WILL BE MODIFIED AS DIRECTED ON-SITE BY THE SUPERINTENDENT.
- THE LOCATION OF EROSION AND SEDIMENTATION CONTROLS WILL BE DETERMINED ON SITE BY THE SUPERINTENDENT.
- ACCESS TRACKS THROUGH THE SITE WILL BE LIMITED TO THOSE DETERMINED BY THE SUPERINTENDENT AND THE CONTRACTOR PRIOR TO ANY WORK COMMENCING.
- ALL SETTING OUT IS THE RESPONSIBILITY OF THE CONTRACTOR PRIOR TO WORKS COMMENCING ON SITE. THE SUPERINTENDENT'S SURVEYOR SHALL PEG ALL ALLOTMENT BOUNDARIES, PROVIDE COORDINATE INFORMATION TO THESE PEGS AND PLACE BENCH MARKS. THE CONTRACTOR SHALL SET OUT THE WORKS FROM AND MAINTAIN THESE PEGS.
- PLANS ARE MINIMUM REQUIREMENTS AND ARE TO BE USED AS A GUIDE ONLY. EXACT MEASURES USED SHALL BE DETERMINED ON SITE IN CONJUNCTION WITH PROGRAM OF CONTRACTOR'S WORKS etc.

FIELD INLET SEDIMENT TRAP

SHAKEDOWN DEVICE

GRATED DRAIN DETAIL

PLANTER GRATE DETAIL

RAINWATER OUTLET DETAIL

SPON DRRAIN SECTION DETAIL

Typical Subsoil Drain

TYPICAL GRATED INLET PIT DETAIL

SILT FENCE NOTES:

- FILTER CLOTH TO BE FASTENED SECURELY TO POSTS WITH GALVANISED WIRE TIES, STAPLES OR ATTACHMENT BELTS.
- POSTS SHOULD NOT BE SPACED MORE THAN 3.0M APART.
- WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER THEY SHALL BE OVERLAPPED BY 150MM AND FOLDED.
- FOR EXTRA STRENGTH TO SILT FENCE, WOVEN WIRE (14MM GAUGE, 150MM MESH SPACING) TO BE FASTENED SECURELY BETWEEN FILTER CLOTH AND POSTS BY WIRE TIES OR STAPLES
- INSPECTIONS SHALL BE PROVIDED ON A REGULAR BASIS, ESPECIALLY AFTER RAINFALL AND EXCESSIVE SILT DEPOSITS REMOVED WHEN 'BULGES' DEVELOP IN SILT FENCE.
- SEIDIMENT FENCES SHALL BE CONSTRUCTED WITH SEDIMENT TRAPS AND EMERGENCY SPILLWAYS AT SPACINGS NO GREATER THAN 40M ON FLAT TERRAIN DECREASING TO 20M SPACINGS ON STEEP TERRAIN.

NOT FOR CONSTRUCTION

A	ISSUE FOR DEVELOPMENT APPLICATION	17/10/2017	HUV	XNT
Issue	Description	Date	Drawn	Design Checked
		200m		

Architect
GM Architects
330a Parramatta Road
Homebush West NSW 2140
EMAIL: info@gmarchitects.com.au
PHONE: (02) 9797 1599

Council
Liverpool City Council

Scale
0 200 400 600mm
SCALE 1:10 @ A1

Certification By:
Anthony Hasham

AUSTRALIAN CONSULTING ENGINEERS.
PTY LTD - A.C.N. 0 84 0 59 9 41
SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2137
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
185 FIFTH AVENUE, AUSTRAL PROPOSED MULTI-UNIT DEVELOPMENT STORMWATER CONCEPT PLAN DEVELOPMENT APPLICATION

Drawing Title
MISCELLANEOUS DETAILS SHEET

Scale A1 Project No. ACE170579.SW.DA Dwg. No. 111 Issue A